Topic 4 -Separable first order ODES

Def: A first order ODE
is called separable if it
is of the form

$$N(y) \cdot y' = M(x)$$

 $y's on one side x is on other side$
 $Ex: y^2 \frac{dy}{dx} = x-5$ A $DDE
order 1$
 $N(y) \cdot y' M(x)$
 $Ex: y' = \frac{x^2}{y} = \frac{1}{y}$ ODE
 ODE
 $Order 1$
which becomes
 $y \cdot y' = x^2$
 $N(y) \cdot dx$ $N(x)$

Formal notation Informal notation

$$N(y) \cdot y' = M(x)$$

 $V(y) \cdot \frac{dy}{dx} = M(x)$
 $V(y) \cdot \frac{dy}{dx} = M(x)$
 $V(y) \cdot \frac{dy}{dx} = M(x)$
 $V(y) \cdot \frac{dy}{dx} = M(x) dx$
 $V(y) \cdot \frac{dy}{dx} = \int M(x) dx$

 $y^{2} \frac{dy}{dx} = x - 5$ EX: Solue where does this solution exist? Also Informal Formal $y^2 \frac{dy}{dx} = x - 5$ $y'(x) \cdot y'(x) = x - 5$ $y^2 dy = (x-5) dx$ $\int y^{2}(x) \cdot y'(x) dx = \int (x-5) dx$ u = y(x)du = y'(x)dx $\int y^2 dy = \int (x-s) dx$ $\int u^2(x) dx = \int (x-5) dx$ $\frac{y^{3}}{3} = \frac{x^{2}}{2} - 5x + C$ $\frac{u}{3} = \frac{x^2}{2} - 5x + C$ where C is a constant where C is a constant

$$y^{3} = \frac{3}{2}x^{2} - \frac{5x+D}{5x+D}$$

$$y^{3} = \frac{3}{2}x^{2} - \frac{5x+D}{5x+D}$$

$$y^{3} = \frac{3}{2}x^{2} - \frac{5x+D}{5x+D}$$
where D is a
constant
$$y^{3} = \frac{3}{2}x^{2} - \frac{5x+D}{5x+D}$$

$$where D is a
a constant$$

Thus, $y^3 = \frac{3}{2}x^2 - 15x + D$ gives a solution to $y^2 \frac{dy}{dx} = x - 5$ You can solve for y to get for y $y = \left(\frac{3}{2}x^{2} - 15x + D\right)$ $y = \left(\frac{3}{2}x^{2} - 15x + D\right)$ $on(-\infty,\infty)$ is a solution

Ex: Solve
$\frac{dy}{dx} + 2xy = 0$ Where does the solution exist?
Informal method
$\frac{dy}{dx} = -2xy$
$\frac{dy}{y} = -2 \times d \times$
$\int \frac{dy}{y} = -\int z \times dx$
$ y = -x^{2} + C_{1}$ $ y = C_{1}$ $ y = C_{2}$
$ y = c$ $ y = c_2 e^{-x^2} = c_2 = c_2$ $ y = c e^{-x^2} = c_2 = c_2$
$y = CC \leftarrow$

Let's test this solution:

$$y = ce^{-x^{2}}$$

 $\frac{dy}{dx} = ce^{-x^{2}}(-2x) = -2cxe^{-x^{2}}$
So,
 $\frac{dy}{dx} + 2xy = -2cxe^{-x^{2}} + 2xce^{-x^{2}} = 0$
Thus, $y = ce^{-x^{2}}$ does in fact solue $\frac{dy}{dx} + 2xy = 0$
Th does so on $T = (-\infty, \infty)$.
Suppose we wanted a solution to
 $\frac{dy}{dx} + 2xy = 0$ (*)
 $y(1) = 2$
Plugging $y(1) = 2$ into $y = ce^{-x^{2}}$ gives
 $2 = y(1) = ce^{-(1)^{2}}$
So, $c = 2e$.
Thus, $y = 2ee^{-x^{2}} = 2e^{-x^{2}+1}$ is a
solution to (*).